Constructing ANFIS With Sparse Data Through Group-Based Rule Interpolation: An Evolutionary Approach

نویسندگان

چکیده

An adaptive-network-based fuzzy inference system (ANFIS) offers a popular and powerful mechanism. As with many other advanced data-driven techniques, developing an effective ANFIS typically requires sufficient training data. However, in real-world applications, it is not always straightforward to obtain large amount of representative data that cover the entire problem space accomplish required training, seriously restricting performance learned ANFIS. This article introduces new learning approach through evolutionary process, which able generate only small certain region, by interpolating well-trained ANFISs neighboring regions. Such process works first producing initial population candidate rules region shortage, rule dictionary constructed from trained neighborhood The crossover mutation operations over these are then executed effort attain candidates improved performance. When this genetic terminates, chromosomes final either collectively form or each individually represents ANFIS, depending on whether single set representing implemented chromosome within evolving population. Comparative experimental evaluations both synthetic datasets carried out, demonstrating spite proposed interpolation produce models significantly outperform those using existing mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

constructing gender identity through narratives based on hallidays metafunctions

هویت, شکل دادن و بازنمایی آن در گفتمان, توجه بسیاری از محققان این رشته را به خود جلب کرده است. تحقیق حاضر بر شکل دادن به هویت جنسیتی هشت تن از دانشجویان ایرانی مشغول به تحصیل در دوره کارشناسی ارشد از طریق بررسی روایات آنان از تجربیات شخصی, متمرکز شده است. تحلیل داده ها در این تحقیق مشتمل بر سه بخش است: بخش اول شامل کدگذاری موضوعی روایات است که بر اساس آن هویت جنسیتی شرکت کنندگان در تحقیق بر اسا...

15 صفحه اول

Learning to Play Pac-Man: An Evolutionary, Rule-based Approach

Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. This paper describes an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset, with parameters that control the probability of movement by the agent given the constra...

متن کامل

An Approach to Reducing Overfitting in FCM with Evolutionary Optimization

Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...

متن کامل

Block-Based Sparse Integral Histogram with Interpolation

Integral Histogram is widely used among various real-time algorithms due to its computationally efficient facility to compute histograms from an image. However, its advantage is greatly diminished for algorithms requiring only a few histograms since required initialization operation takes up majority of total running time. In this paper we propose a block-based integral histogram that drastical...

متن کامل

A Model-based Expansion on Interpolation for Multiresolution Sparse Data

This paper addresses the interpolation of sparse irregular data when these sparse data belong to diff erent scales. We propose an algorithm to iteratively approximate the intermediate values between irregularly sampled data, when a set of sparse values at coarser scales is known. This is possible if there is a characterized model for the multiresolution decomposition / reconstruction scheme of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Fuzzy Systems

سال: 2022

ISSN: ['1063-6706', '1941-0034']

DOI: https://doi.org/10.1109/tfuzz.2021.3049949